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Abstract

An automatic balancer is a simple device consisting of several balancing balls, which are guided to move
in a circular track. The suitability of a two-ball automatic balancer to balance the residual unbalance in a
vertical rotor is investigated. The combined dynamical system consisting of the rotor and the balancer has a
balanced steady state together with a set of unbalanced steady states. Under certain conditions, the balls
ultimately position themselves so as to balance the system completely. A linearized analysis is initially used
to have an insight into the stability of the balanced steady state of the system. Subsequent nonlinear
response analysis showed that the scope of the linear analysis is severely limited to predict the stability of
balanced steady state. The nonlinear analysis revealed that, under certain conditions, the system ultimately
settles down to the balanced steady state and thereby balance the residual unbalance in a vertical rotor
completely.
r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

In high-speed machinery applications, the imbalance in the rotor introduces an unwanted
dynamic load, which causes the rotor shaft to whirl about its axis [1,2]. This imbalance can be
minimized by balancing the rotor as far as possible. In an experimental study, Lindell used an
automatic balancing device to reduce the unbalance vibration in a hand-held grinding machine [3].
see front matter r 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

ðaCx0 ; aCy0 Þ acceleration components of point C

cB damping coefficient for balancing ball
motion in track

c̄B c̄B ¼ cB=mBo0

cR damping coefficient for rotation of disk
c̄R c̄R ¼ cR=Io0

cT damping coefficient for translation of
disk

c̄T c̄T ¼ cT=mo0

EI flexural rigidity of shaft
FED force at C due to elasticity
FIB force due to inertia of balancing ball
FID force due to inertia of disk
ði; j;kÞ unit vectors for Oxyz frame
ði0; j0; k0Þ unit vectors for Cx0y0z0 frame
I rotor inertia about transverse axis
Ī Ī ¼ I=ml2

k0 k0 ¼ 3EI=l3

l length of cantilever shaft
m mass of disk
mB mass of balancing ball
n number of balancing balls

MED moment at C due to elasticity
MID moment at C due to inertia of disk
p frequencies of linearized system
p0 forward frequencies of rotor
q0 forward frequencies of rotor in station-

ary frame
R radius of track on disk
s complex frequency
ðvCx0 ; vCy0 Þ velocity components of point C

ðxC ; yCÞ coordinates of mounting point C

ðx̄C ; ȳCÞ x̄C ¼ xC=d, ȳC ¼ yC=d
ða; b; gÞ rotations of shaft at C

ðā; b̄Þ ā ¼ al=d, b̄ ¼ bl=d
d unbalance eccentricity
l l ¼ mBR=md
L L ¼ d=R

m m ¼ 4=3Ī

n n ¼ mB=m

o angular velocity of rotor
o0 o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
ðox0 ;oy0 ;oz0 Þ angular velocity components of disk
O O ¼ o=o0

ci angular position of ith balancing ball
c10;c20 balanced positions of the balls
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The balancing device was located on the grinder, which was mounted on a vertical shaft. In this
device, several balancing balls were guided to move in an oil-filled circular track in a plane
perpendicular to the rotor shaft. Additional information on the design and installation of the
device is available in this reference. Under certain conditions, the balancing balls moved
automatically to their steady-state positions and thereby reduced the rotor vibration due to
unbalance whirling. In certain other circumstances, the performance of the automatic balancer
was found to be unsatisfactory.
The stability of the dynamic system consisting of the rotor and the balancing device was

considered to provide an insight into the effectiveness of the balancing device in rotor-dynamic
applications. Rajalingham, Bhat and Rakheja studied the stability analysis of undamped dynamic
system consisting of the Jeffcott rotor and a single-ball balancer [4,5]. This study utilized the
linearized equations of motion to identify the stable speed range of the system. It indicated that
the presence of the balancing ball can reduce rotor vibration in certain super-critical speed range
of the system.
Hwang and Chung investigated the stability analysis in the application of a double race

automatic balancing device to balance the Jeffcott rotor [6]. Linear viscous damping was included
in the rotor-dynamic model and the linearized equations of motion were used for the stability
analysis. They identified the balanced steady-state configuration and investigated the system
stability of this balanced steady state using linearized equations of motion. Subsequently, Chung
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and Jang extended the analysis for a cantilever rotor, by including the gyroscopic influence on the
stability of the balanced steady-state configuration of the dynamic system [7].
In addition to the system damping, the nonlinearity of the governing equations has to be

considered for realistic dynamic analysis of the system. Since the motion of the balancing ball in
its track is not restrained, the angular positions of the balancing balls need not vary within small
intervals. Consequently, the linearized equations cannot represent the dynamical system
reasonably well. However, the stability analysis using the linearized equations can provide useful
insight into the stability of the system. Finally, for accurate analysis of the system, the nonlinear
equations must be used with an arbitrary set of initial conditions.
2. Theory

For the analysis, the rotor is modeled as a thin unbalance disk, which is mounted on a flexible,
mass-less cantilever shaft at C, as shown in Fig. 1. As the shaft rotates, the disk undergoes
translation and rotation in three dimensions. The displacement of the mounting point C in the
longitudinal direction is second order compared to those in the transverse directions. A brief
description of the kinematics that will be helpful in developing the equations of motion of the
dynamical system consisting of the unbalanced disk and the balancer balls is presented below.
Fig. 1. Stationary frame OXYZ.
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2.1. Kinematics of disk

Under certain conditions, the residual imbalance in the disk can be balanced by using an
automatic balancing device. The device consists of a number of balancing balls that are guided to
move in a circular track with center at C. A rotating reference frame, which is fixed on the disk at
C, is used to express the equations of motion of this dynamic system. Such a reference frame can
be visualized through a sequence of rotations and translations from the stationary frame indicated
in Fig. 1.
During the unbalance whirling motion of the rotor shaft, the displacement component of point

C in OZ direction is negligible. Consequently, point C is considered to move in the horizontal
plane OXY. The predominant component of the angular velocity of the rotor shaft is in the OZ
direction. Thus, it is convenient to visualize the displacement components of the mounting point
C, with respect to a reference frame Oxyz that rotates about OZ-axis at synchronous speed, as
shown in Fig. 2. The displacement of point C in the plane Oxy can be defined by its coordinates
ðxC ; yCÞ. Here, the direction of Ox-axis is chosen to be that of CG, from the mounting point C to
the center of mass G of the disk. The rate of change of basis vectors of the frame Oxyz can be
expressed as

di=dt

dj=dt

dk=dt

2
64

3
75 ¼

0 o 0

�o 0 0

0 0 0

2
64

3
75

i

j

k

2
64
3
75. (1)

In addition to the displacement of point C, the rotor shaft has rotation components at point C
that can be visualized as three sequential Euler rotations at C. A reference frame, which is rigidly
attached to the disk at point C, is more convenient to express the equations of motion. Such a
Fig. 2. Frame Oxyz rotating at synchronous speed.
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frame can be formed by translating frame Oxyz to C and following it up by three Euler rotations.
The translation of the frame Oxyz to the point C results in the frame Cx1y1z1. The first Euler
rotation a about Cx1-axis transforms Cx1y1z1 frame to Cx2y2z2. The second rotation b about
Cy2-axis brings Cx2y2z2 to Cx3y3z3. The third Euler rotation g about Cz3-axis completes the
transformation of Cx3y3z3 frame to Cx0y0z0. Last three sequential Euler rotations transform
the basis vectors as

i0

j0

k0

2
64

3
75 ¼

cos g sin g 0

� sin g cos g 0

0 0 1

2
64

3
75

cos b 0 � sin b

0 1 0

sin b 0 cosb

2
64

3
75

1 0 0

0 cos a sin a

0 � sin a cos a

2
64

3
75

i

j

k

2
64
3
75. (2)

The rate of change of the transformed basis vectors can be expressed as

di0=dt

dj0=dt

dk0=dt

2
64

3
75 ¼

0 oz0 �oy0

�oz0 0 ox0

oy0 �ox0 0

2
64

3
75

i0

j0

k0

2
64

3
75, (3)

where ox0 ;oy0 and oz0 are the components of the absolute angular velocity of the disk in Cx0y0z0

frame. Using Eqs. (1) and (2), the expressions for these components can be obtained as

ox0 ¼ _a cos b cos gþ _b sin gþ o � cos a sinb cos gþ sin a sin gð Þ, (4a)

oy0 ¼ �_a cos b sin gþ _b cos gþ o sin a cos gþ cos a sinb sin gð Þ, (4b)

oz0 ¼ _gþ _a sin bþ o cos a cos b. (4c)

Since the variables a, b, _a and _b are first-order quantities, the angular velocity component of
the shaft at C in the axial direction can be approximated from Eq. (4c) as _gþ o. However, in the
absence of torsional vibration, this axial component of the angular velocity must be equal to the
speed of the shaft. Thus oz0 ¼ o, and consequently, the variable g must remain constant. For
vector method, such a first-order approximation for the angular velocity of disk in the axial
direction is acceptable. However, for scalar energy approach, the second-order error term in this
angular velocity component contributes an additional term in the kinetic energy expression.
For the present vector analysis, this constant value of the variable g can be chosen to be zero.

The remaining angular velocity components can then be approximated from Eqs. (4a) and 4(b) as,
ox0 � ð_a� boÞ and oy0 � ð

_bþ aoÞ.
Under first-order approximation, Eq. (2) can be simplified to i ¼ i0 þ bk0, j ¼ j0 � ak0 and

k ¼ �bi0 þ aj0 þ k0. Consequently, the velocity and acceleration of the point C in Cx0y0z0 frame
can be approximated as

vC ¼ vCx0 i
0 þ vCy0 j

0,

aC ¼ aCx0 i
0 þ aCy0 j

0, ð5Þ
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where

vCx0 ¼ _xC � oyC

� �
,

vCy0 ¼ _yC þ oxC

� �
,

aCx0 ¼ €xC � 2o _yC � o2xC

� �
,

aCy0 ¼ €yC þ 2o _xC � o2yC

� �
. ð6Þ

Owing to the choice of the reference frame, the position, velocity and acceleration of the center
of mass of the disk relative to C approximate to

rG Cj ¼ di0,

vG Cj ¼ odj0,

aG Cj ¼ � o2di0. ð7Þ

The balls of the automatic balancer moves in Cx0y0 plane along a circular track, centered at
point C. The locations of these balls in this track are defined by their angular positions
ci; i ¼ 1; 2; . . . ; n, as shown in Fig. 3. The velocity and acceleration of the ball relative to C can be
approximated to

vB Cj ¼ R oþ _c
� �

� sinci0 þ coscj0ð Þ þ vB Cj

� �
z0
k0,

aB Cj ¼ � Rfðoþ _cÞ2 coscþ €c sincgi0 � R oþ _c
� �2

sinc� €c cosc
n o

j0 þ aB Cj

� �
z0
k0. ð8Þ
Fig. 3. Frame Cx0y0z0 frozen to disk.
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Here, the components ðvBjCÞz0 and ðaB Cj Þz0 in Eq. (8) are due to the rotation components of the disk
about Cx0 and Cy0 axes. Their expressions can be obtained as

vB Cj

� �
z0
¼ R ox0 sinc� oy0 cosc

� �
,

aB Cj

� �
z0
¼ R _ox0 þ 2 _coy0 þ ooy0

� �
sincþ � _oy0 þ 2 _cox0 þ oox0

� �
cosc

� �
.

2.2. Equations of motion

The inertia effects of the disk can be represented by the inertia force FID at G and a coupleMID.
These inertia force and couple can be expressed as

FID ¼ �m aCx0 � o2d
� �

i0 �maCy0 j
0,

MID ¼ � Ix0 _ox0 þ ooy0
� �

i0 � Iy0 _oy0 � oox0
� �

j0.

Under the first-order approximation, the inertia force FID can be moved to the point C and the
resulting change in inertia couple MID for such movement of the inertia force is negligible.
Further, the moments of inertia about axes Cx0 and Cy0 can be regarded as equal.
The inertia effect of the ball can be represented by the force FIB at B. The expression for this

inertia force becomes

FIB ¼ �mB aC þ aB Cj

� �
.

The component of the moment of the force FIB about axes Cx0 and Cy0 can be expressed as
�mBRðaB Cj Þz0 sinc and mBRðaB Cj Þz0 cosc, respectively. Since the mass ratio mB=m is small, these
moment components can be neglected in comparison with those of MID.
The elastic force and moment acting on the disk at C can be expressed as

FED ¼ � 4k0 xC i
0 þ yC j

0
� �

� 2k0l �bi0 þ aj0ð Þ,

MED ¼ � 2k0l yC i
0 � xC j

0
� �

�
4

3
k0l

2 ai0 þ bj0ð Þ,

where

k0 ¼ 3EI
�

l3.

The damping effect for translation of the disk in the surrounding air can be represented by
the force FDT ¼ �cT ðvC þ vG Cj Þ at G. This first-order damping force can be shifted to point C,
and the error associated with such a shift is a second-order couple, which can be neglected.
Similarly the moment MDR ¼ �cRðox0 i

0 þ oy0 j
0Þ is introduced to represent the damping effect due

to the rotation of the disk. Since the disk is assumed to be thin, the aerodynamic force associated
with the rotation of this disk about Cz0-axis is not considered in the analysis. Further, the
damping effect on the ball for its relative motion in the track is represented by a damping force of
magnitude cBRo in the direction opposite to its relative motion in the frame Cx0y0z0.
The force and moment balance in Cx0 and Cy0 directions become

mþ nmBð Þ €xC � 2o _yC � o2xC

� �
þ cT _xC � oyC

� �
þ 4k0xC � 2k0lb

�
X

mBRfðoþ _ciÞ
2 cosci þ

€ci sincig ¼ mo2d, ð9Þ
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mþ nmBð Þ €yC þ 2o _xC � o2yC

� �
þ cT _yC þ oxC

� �
þ 4k0yC þ 2k0la

�
X

mBRfðoþ _ciÞ
2 sinci �

€ci coscig ¼ �cTod; ð10Þ

I €aþ o2a
� �

þ cR _a� obð Þ þ 2k0lyC þ
4
3
k0l

2a ¼ 0, (11)

Ið €bþ o2bÞ þ cRð
_bþ oaÞ � 2k0lxC þ

4
3
k0l

2b ¼ 0. (12)

The equation of motion of the ith ball in the direction of its relative motion in the track can be
expressed as

mBR €ci þ cBR _ci þmB €yC þ 2o _xC � o2yC

� �
cosci � €xC � 2o _yC � o2xC

� �
sinci

� �
¼ 0. (13)

For the investigation, the displacement and rotation components are nondimensionalized as
x̄C ¼ xC=d, ȳC ¼ yC=d, ā ¼ al=d and b̄ ¼ bl=d. The variable t̄ ¼ o0t is used to represent the non-
dimensional time. Here o0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
k0=m

p
, is the characteristic bending frequency of the rotor. The

other nondimensional parameters needed to rewrite Eqs. (9–13) in nondimensional form are
defined as n ¼ mB=m, Ī ¼ I

�
ml2, l ¼ mBR=md, c̄T ¼ cT=mo0, c̄R ¼ cR=Io0, c̄B ¼ cB=mBo0 and

O ¼ o=o0. Denoting the derivatives of the nondimensional variables with respect to the
nondimensional time o0t by the superscript ð Þ0, Eqs. (9–13) can be rewritten in nondimensional
form as

1þ nnð Þ x̄00C � 2Oȳ0C � O2x̄C

� �
þ c̄T x̄0C � OȳC

� �
þ 4x̄C � 2b̄

�
X

l Oþ c0i
� �2

cosci þ c00i sinci

n o
¼ O2; ð14Þ

1þ nnð Þ ȳ00C þ 2Ox̄0C � O2ȳC

� �
þ c̄T ȳ0C þ Ox̄C

� �
þ 4ȳC þ 2ā

�
X

lfðOþ c0Þ2 sinci � c00i cos ncig ¼ �c̄TO; ð15Þ

Ī ā00 þ O2ā
� �

þ Ī c̄R ā0 � Ob̄
� �

þ 2ȳC þ
4
3
ā ¼ 0, (16)

Ī b̄
00
þ O2b̄

� �
þ Ī c̄R b̄

0
þ Oā

� �
� 2x̄C þ

4
3
b̄ ¼ 0, (17)

lc00i þ lc̄Bc
0
i þ n ȳ00C þ 2Ox̄0C � O2ȳC

� �
cosci � x̄00C � 2Oȳ0C � O2x̄C

� �
sinci

� �
¼ 0. (18)

At steady state, the derivative terms in Eqs. (14–18) become zero. When nX2, the system of
modified equations has two categories of solutions. The most useful category of balanced steady
state corresponds to x̄C ¼ 0, ȳC ¼ 0, ā ¼ 0, b̄ ¼ 0,

P
cosci ¼ �1=l and

P
sinci ¼ c̄T=lO. In

addition to this balanced steady state, the system has several other unbalanced steady states,
representing possible modifications of rotor whiling due to the presence of the balancing balls.
However, the stability analysis of the balanced steady state is expected to provide valuable insight
that will be useful in designing an effective balancing device.
For the special case n ¼ 2, the balancing balls have well-defined balanced steady state positions.

At this stage, the analysis is continued with two balancing balls. The angular positions of the balls
in the balanced steady state become c1 ¼ c10 and c2 ¼ c20 where cosc10 þ cosc20 ¼ �1=l and
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sinc10 þ sinc20 ¼ c̄T=lO. These balanced positions of the balls can be expressed explicitly as
c10 ¼ p� cm � cd and c20 ¼ p� cm þ cd , where cm ¼ arctan c̄T=O

� �
and coscd ¼ 1=2l coscm.

Since coscdp1, such balanced positions of the balls are possible only when

n � 0:5L
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c̄2T

�
O2

� �q
. Here, the parameter L ¼ d=R represents the residual unbalance in the

rotor. Thus, the complete balancing can be realized only when the mass ratio exceeds a lower
bound, which increases with the residual unbalance of the rotor. This condition for the existence

of the balanced steady state can be rewritten alternatively as OXc̄T=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n=L
� �2

� 1

q
and nX0:5L.

Thus, the balanced steady state is possible, only when the speed exceeds a certain lower bound.

2.3. Small perturbation of equations of motion about balanced position

Considering the perturbations f1 ¼ c1 � c10 and f2 ¼ c2 � c20 to be small, the linearized
equations of motion can be expressed as,

1þ 2nð Þ x̄00C � 2Oȳ0C � O2x̄C

� �
þ c̄T x̄0C � OȳC

� �
þ 4x̄C � 2b̄

� l s1f
00
1 þ 2c1Of

0
1 � s1O2f1

� �
þ s2f

00
2 þ 2c2Of

0
1 � s2O2f2

� �� �
¼ 0, ð19Þ

1þ 2nð Þ ȳ00C þ 2Ox̄0C � O2ȳC

� �
þ c̄T ȳ0C þ Ox̄C

� �
þ 4ȳC þ 2ā

þ l c1f
00
1 � 2s1Of

0
1 ¼ c1O2f1

� �
þ c2f

00
2 � 2s2Of

0
2 � c2O2f2

� �� �
¼ 0, ð20Þ

Ī ā00 þ O2ā
� �

þ c̄R ā0 � Ob̄
� �

þ 2ȳC þ
4
3
ā ¼ 0, (21)

Ī b̄
00
þ O2b̄

� �
þ c̄R b̄

0
þ Oā

� �
� 2x̄C þ

4
3
b̄ ¼ 0, (22)

lf001 þ lc̄Bf
0
1 þ n ȳ00C þ 2Ox̄0C � O2ȳC

� �
c1 � x̄00C � 2Oȳ0C � O2x̄C

� �
s1

� �
¼ 0, (23)

lf002 þ lc̄Bf
0
2 þ n ȳ00C þ 2Ox̄0C � O2ȳC

� �
c2 � x̄00C � 2Oȳ0C � O2x̄C

� �
s2

� �
¼ 0. (24)

Here c1 ¼ cosc10, c2 ¼ cosc20, s1 ¼ sinc10 and s2 ¼ sinc20.
Substituting the modal solutions x̄C ¼ ~xC exp so0tð Þ etc., Eqs. (19)–(24) can be expressed

as a system of three matrix equations in three modal vectors f ~xC ~yCg
T, f~a ~bgT and f ~f1

~f2g
T.

Eliminating the last two modal vectors, the matrix equations can be simplified to

g1 sð Þ �h sð Þ

h sð Þ g2 sð Þ

" #
~xC

~yC

( )
¼

0

0

	 

, (25)

where the diagonal terms g1ðsÞ and g2ðsÞ are sixth degree polynomials in s, while the off diagonal
term hðsÞ is a fifth degree polynomial. The characteristics equation of the linearized system
becomes, g1g2 þ h2

¼ 0. Routh’s criteria can be used to study the stability of this system.
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For the special case of the undamped linearized system, the expressions for g1ðsÞ, g2ðsÞ and hðsÞ

can be expressed as

g1 sð Þ ¼ s6 þ 4þ mð Þs4 þ mþ 4� mð ÞO2 � O4
� �

s2
� �
þ 2nð Þ O2s4 þ mO2s2 � mO4 þ O6

� �� �
þ n

�
2l2

� �
s6 þ mþ 3O2

� �
s4 þ 2mO2 þ 3O4

� �
s2 þ mO4 þ O6

� �� �� �
,

g2 sð Þ ¼ s6 þ 4þ mð Þs4 þ mþ 4� mð ÞO2 � O4
� �

s2
� �
þ 2nð Þ s6 þ mþ 4O2

� �
s4 � 3 mO2 þ O4

� �
s2

� �
þ n

�
2l2

� �
�s6 � mþ 3O2

� �
s4 � 2mO2 þ 3O4

� �
s2 � mO4 þ O6

� �� �� �
,

h sð Þ ¼ 2Osð Þ s4 þ mþ O2
� �

s2
� �

þ 4nOsð Þ O2s2 þ mO2 þ O4
� �� �

, ð26Þ

where, m ¼ 4=3Ī .
The characteristic equation g1g2 þ h2

¼ 0 for the undamped case has terms in even powers of s
only. The frequency equation of this system can be expressed as

g1 jpð Þg2 jpð Þ þ h2 jpð Þ ¼ 0. (27)

This twelfth degree frequency equation for the case of the undamped system has six roots for p2,
corresponding to the six vibration modes. For stability, all of these six roots for p2 must be positive.
Whenever this system is stable, the response of this undamped linear system from any arbitrary
initial position must always oscillate around the balanced steady-state configuration. In the presence
of damping, this linear system response must approach this balanced configuration asymptotically.
For linearization of the system, the variations in the angular positions of the balls were assumed

to be small. Since this assumption is not strictly justifiable, the nonlinear equations of motion are
more appropriate for the investigation of the response of the dynamical system from any arbitrary
initial configuration.
3. Results and discussion

The steady-state solutions for the displacement and rotation of the unbalanced rotor alone can
be obtained by setting mB ¼ 0 in Eqs. (9)–(12). In the absence of damping, the steady unbalance
whirling configuration can be deduced as

xC ¼ � O2 mþ O2
� �

d
� ��

O4 � 4� mð ÞO2 � m
� �

,

yC ¼ 0,

a ¼ 0,

lb ¼ � 2O2d
� ��

Ī O4 � 4� mð ÞO2 � m
� �

. ð28Þ

Thus, the whirling amplitude will become infinite, at the speed for which
O4 � ð4� mÞO2 � m ¼ 0. The explicit expression for this critical speed can be deduced as

Oc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð4� mþ m2=4Þ

p
þ ð2� m=2Þ

n or
. The expression indicates that the critical speed decreases

from 2 to 1 as m increases from zero to infinity.
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An insight into this critical speed can be achieved by examining the natural vibration of the
undamped rotor alone. The modal equation for this case can be simplified as

g0 sð Þ �h0 sð Þ

h0 sð Þ g0 sð Þ

" #
~xC

~yC

( )
¼

0

0

	 

, (29)

where g0ðsÞ ¼ fs
4 þ ð4þ mÞs2 þ ðmþ ð4� mÞO2 � O4Þg and h0ðsÞ ¼ ð2OsÞfs2 þ ðmþ O2Þg. For phy-

sical interpretation, the frequency equation of this undamped rotor in the synchronous rotating
frame can be factorized into the forward and backward frequency equations [2]. From Eq. (29),
the forward frequency equation of the undamped rotor can be expressed as g0ð jp Þ þ jh0ð jp Þ ¼ 0.
Using the expressions for g0ðsÞ and h0ðsÞ, this forward frequency equation can be simplified to

p40 þ 2Op30 � 4þ mð Þp20 � 2O mþ O2
� �

p0 þ mþ 4� mð ÞO2 � O4
� �� �

¼ 0. (30)

Comparison of Eqs. (28) and (30) indicates that the whirling amplitude becomes infinite at the
speed for which the natural frequency of the rotor in the synchronous rotating frame vanishes.
The variations of the four natural frequencies of the rotor with speed for the case Ī ¼ 0:25 are
shown in Fig. 4 as continuous lines. The frequencies q0 ¼ p0 þ O in a stationary frame are
indicated by the dashed lines [2]. Thus, the critical speed of the rotor coincides with the forward
synchronous natural frequency of the rotor in a stationary reference frame. Information on the
effectiveness of the automatic balancer around this critical speed is very useful in suppressing the
whirling amplitude of the rotor.
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The presence of the balancing balls modifies the rotor frequencies and introduces two
additional frequencies. Furthermore, the balanced steady state of this system is stable only when
the natural frequencies of all six natural modes are real. The roots of the frequency Eq. (27) of the
undamped system depends on the nondimensional speed O and the system parameters Ī , n and l.
For physical interpretation, it is desirable to replace the parameter l with L ¼ ðn=lÞ ¼ ðd=RÞ,
which represents the residual unbalance in the rotor.
Having chosen Ī ¼ 0:25 and L ¼ 0:05, the mass ratio n was varied from 0.01 to 0.10 in steps of

0.01, and the corresponding speed ranges within which the frequency equation (27) has six
positive roots for p2 were identified. For this purpose, the speed O was first varied from 0.1 to 5.00
in steps of 0.1, and the particular steps within which the stability boundary speed lies were
identified. The stability boundary speeds were then calculated to five decimal place accuracy. The
variation of the stable speed range with mass ratio for the case Ī ¼ 0:25 and L ¼ 0:05 is shown in
Fig. 5. Repeated computations using various combinations of the system parameters Ī , n and L
indicate that the linear undamped system remains stable within one or more intervals of speed.
For the case Ī ¼ 0:25, n ¼ 0:05 and L ¼ 0:05, the variation of the undamped system frequencies

with speed is shown in Fig. 6. This result indicates that the number of stable modes of the
linearized system at the nondimensional speeds O ¼ 1:0, O ¼ 2:5, O ¼ 3:5 and O ¼ 4:5 as 4, 2, 6
and 2, respectively. When the nondimensional speed O lies between 3.1907 and 3.7059, all six
natural modes of the system have real natural frequencies and consequently, the balanced steady
state is stable within this speed range.
When the undamped linear system is stable, its response from any initial conditions is known to

be a mixed mode oscillation about its steady-state configuration. Further, the presence of
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damping in a stable linear system dissipates the vibrational energy and enables the response to
approach this steady-state position asymptotically. Thus, the computation of the response of the
linearized system at a stable speed can be used to evaluate the accuracy and suitability of the
numerical methods for such response studies.
Fourth-order Adams–Moulton predictor–corrector method is used iteratively to compute the

response. The response values for the first four starting steps were obtained using a sixth-order
Runge–Kutta method with known error estimate. The initial step size in the Runge–Kutta
algorithm is controlled to keep the local accuracy to the fifth order. A trial application of this
algorithm to the damped linearized system justifies its suitability to study the response of the
nonlinear system.
Owing to the unrestrained motion of the balancing balls in their track, the linearizing

assumptions that the variations f1 ¼ c1 � c10 and f2 ¼ c2 � c20 of balancing ball angular
positions are small are not justifiable. Further, when c01 and c02 are not small, the linearization of
the centrifugal force term in the equations of motion could possibly introduce additional errors.
Thus, it becomes necessary to study the system response using the nonlinear governing equations.
The system parameters for the non linear system response study are chosen as Ī ¼ 0:25, n ¼ 0:05,
L ¼ 0:05, c̄T ¼ 2:0, c̄R ¼ 1:0 and c̄B ¼ 1:0. The initial conditions, x̄C ¼ ȳC ¼ 0, x̄0C ¼ ȳ0C ¼ 0,
ā ¼ b̄ ¼ 0, ā0 ¼ b̄

0
¼ 0, c1 ¼ 0, c2 ¼ p, c01 ¼ c02 ¼ 0 are used for the nonlinear response analysis.

At O ¼ 3:5, Fig. 6 indicates that the linearized undamped system is stable. The results of the
nonlinear response analysis indicate the variations of the displacement components x̄C and ȳC

with time o0t at speed O ¼ 3:5 as shown in Fig. 7. The corresponding variations of the rotation
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components ā and b̄, and the angular positions c1 and c2 of the balancing balls are shown in
Figs. 8 and 9, respectively. At O ¼ 3:5, the steady-state angular positions of the balancing balls
can be calculated as c10 ¼ 1:6653 and c20 ¼ 2p� 2:7036. The response clearly converges to the
balanced steady-state configuration of the system.
There is a possibility of collisions of the balls within the track during this response period. Since

the velocities of the masses are exchanged during perfectly elastic collisions of equal masses, the
consequence of such collisions can be ignored in the response computation.
The system has unbalanced steady states also. The influence of the initial conditions on the

system response is investigated by changing the initial ball positions to c1 ¼ c2 ¼ 0, while
maintaining the other initial conditions at their earlier values. The response of the system under
the modified initial conditions is shown in Figs. 10–12. In these variations, the balls move together
in complete circles and the system response does not approach a definite steady state. Further, the
nature of this limit response can be understood from the plot of ȳC against x̄C , shown in Fig. 13.
In this case, the limit response of the system can be identified as a limiting cyclic motion around an
unbalanced steady state. Thus, the initial positions of the balls have significant influence on the
ultimate steady state of the system. Further, it demonstrates the limitations of the linearized
analysis of the system.
The former initial conditions c1 ¼ 0 and c2 ¼ p are restored for further response studies at

O ¼ 4:5, O ¼ 2:5 and O ¼ 1:0. Linearized undamped analysis indicated that the balanced steady
state of the system at these three speeds is unstable. However, Figs. 14–19 reveal that the system
responses at O ¼ 4:5 and O ¼ 2:5 for the chosen initial conditions are stable and ultimately
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4

3

2

1

0
0 10 20 30 40 50 60 70 80 90 100

-1

-2

-3

-4
Time

A
ng

ul
ar

 p
os

it
io

ns

Fig. 16. Variation of angular positions of balls with time, Ī ¼ 0:25; n ¼ 0:05; L ¼ 0:05; O ¼ 4:5: ————, c1;
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approach the balanced steady state. Thus, the linearized undamped analysis is not accurate
enough to predict the stability of the balanced steady state. As mentioned earlier, the linearizing
assumption that the variations of c1 and c2 remain small is not justifiable. The cyclic nature of the
variables c1and c2, and the strong nonlinearity in the centrifugal force term in the equations of
motion suggests the necessity of nonlinear analysis for this system.
Because of the presence of damping in the system, the balanced steady state is realizable only

for higher speeds in the range OX1:1547. Thus, at O ¼ 1:0, the system does not have a balanced
steady state. Figs. 20–22 indicates the response of the system at O ¼ 1:0. In this case, the balancing
balls move towards the same angular position c1 ¼ c2, which corresponds to an unbalanced
steady state of the system (Fig. 20) [4].
In the present response analysis, a set of 12 initial conditions are used in addition to the seven

nondimensional parameters that identify the system. Owing to the possibility of large number
data sets, the system cannot be analyzed completely. For certain data sets, the response stabilizes
to either a balanced or an unbalanced steady state. In certain other cases, the response is found to
approach a limit cycle.
The scope of the present investigation is restricted to the analysis of the system response at

constant operating speed. The balancing device that suppresses whirling motion of the rotor for
all possible initial conditions is considered to be effective. This investigation is a step in identifying
the factors that enhance the effectiveness of the balancing device. Analysis using a simplified
system model must be attempted first to identify the factors that can enhance the effectiveness of
the automatic balancing device.
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4. Conclusions

The suitability of automatic balancing devise to completely balance the residual imbalance in a
disk mounted on a flexible cantilever shaft is investigated. The translation and the rotation of the
disk during unbalanced whirling motion and the consequent damping influence are considered in
the analysis. Seven nondimensional parameters are used to define this damped system.
Two balancing balls are used to realize the balanced steady-state configuration of the system.

A minimum mass of the balancing ball is required to realize this balanced steady state. Besides the
balanced steady state, the system has several unbalanced steady states.
Linearized vibration analysis of the system about its balanced steady-state configuration is used

to determine the stable speed range of this state. The more accurate nonlinear response analysis
showed that the linearized stability analysis is not always accurate. In certain cases, the nonlinear
response is found to depend strongly on the chosen initial conditions.
The nonlinear response analysis of the system indicates that the system either stabilizes to a

steady-state configuration or settles down to a limit-cycle vibration. In certain cases, the initial
conditions play a decisive role in the determination of the ultimate state of the system response.
However, the investigation revealed that, under certain conditions, the system stabilizes to its
balanced steady state and thereby balances the residual imbalance completely.
Because of the complexity of the system model, the analysis could not pin point directly the

factors that can enhance the effectiveness of the automatic balancing device. Analysis using a
simplified system model is more appropriate to eke out results that are more useful to the design
of an effective balancer.
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